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ABSTRACT. Differential polynomial sets and systems can be triangularized by using Ritt-Wu’s method of characteristic 

sets, which uses pseudo- division to eliminate variables successively. Jin et al showed that pseudo-division may be replaced 

by other admissible reductions to compute generalized characteristic sets in the algebraic case. In this paper we extend the 

work of Jin et al to the ordinary differential case and present an algorithmic scheme for the computation of generalized 

differential characteristic sets of ordinary differential polynomial sets. The scheme is implemented with some specific 

admissible differential reductions. Preliminary results of experiments in Maple show that the algorithm using our scheme 

performs often better than the characteristic set algorithm based on pseudo-division in terms of efficiency and simplicity of 

output. 
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1. INTRODUCTION 
The method of characteristic sets developed initially by Ritt 

[16] and Wu [22] has become a standard tool for the study of 

systems of polynomial and algebraic differential equations. 

By means of constructing characteristic sets, an arbitrary 

system of polynomials or differential polynomials can be 

triangularized, or be decomposed into special systems of 

triangular form. Following the seminal work of Wu [22], 

extensive investigations have been carried out by many 

researchers in the last three decades (see 

[1,5,6,10,14,15,18,19,24,26] for example), which makes the 

characteristic set method more and more popular and 

powerful in terms of computational complexity, theoretical 

generality, and practical applicability. 

The method has been well studied for the algebraic case, 

with efficient implementations [6,7,15,17,25] and 

remarkable applications [3,5,9,11,12,13,14,18,19,26,27], in 

the differential case there are naturally more difficult issues 

which need be addressed. One of the key  issues  in  the  

computation of  characteristic sets  is  the expression swell 

of immediate polynomials in the process of variable 

elimination, which is performed by means of pseudo- 

division, the main operation used in Ritt-Wu’s characteristic 

set algorithm. 

Wang [6]  refined Ritt-Wu’s algorithm by  using one-step 

pseudo-reduction (instead of pseudo-division) with strategies 

for the selection of reductends and optimal reductors. He 

concluded that optimal selection of reductors as well as 

heuristic generation of s-polynomials can help speed up the 

computation of characteristic sets, sometimes considerably, 

resulting in simple output for large problems. Recall that for 

C  to be a characteristic set of a polynomial set P , a 

necessary condition is that all the polynomials in P have 

pseudo-remainder 0 with respect to C . In order to have the 

concept of characteristic set generalized, Jin, Li and Wang 

[17] weakened the necessary condition by replacing P  with 

an  arbitrary polynomial set that generates the same ideal as 

P . With this weakening and following the work [6], they 

proposed a general algorithmic scheme for computing 

generalized characteristic sets by using admissible 

reductions other than pseudo-division. 

In this paper we extend the work of Jin and others [17] to the 

ordinary differential case and present a similar algorithmic 

scheme for the computation of generalized differential 

characteristic  sets  of  ordinary  differential  polynomial  

sets. We introduce four specific admissible differential 

reductions and  discuss  the  implementation of  the  scheme  

with  these reductions. Preliminary results of experiments in 

Maple show that the algorithm using our scheme performs 

often better than the characteristic set algorithm based on 

pseudo-division in terms of efficiency and simplicity of 

output. 

The paper is structured as follows. After some necessary 

notations and the basic terminology for differential 

polynomials sets, we give a brief review on ordinary 

differential characteristic sets and explain how to compute 

them in Section 2. In Section 3, few admissible reductions 

for ordinary differential polynomial sets are introduced, their 

correctness is demonstrated and we define generalized 

characteristic sets. In section 4 we describe our main 

algorithm NewdCharSet, together with its sub-algorithm 

dMedSet, for the computation of generalized characteristic 

sets. A sample sub-algorithm dFind3R for finding optimal 

triples of d-reductends, d-reductors and admissible d-

reductions is formulated. The correctness of the described 

algorithms is proved. Finally in the Section 5 some test 

examples and experimental results are given. 

2. PRELIMINARIES 

A. Terminology and notations 

We recall some concepts which are used in this paper and on 

which more details can be found in [5], [16], [22]. 

A differential field (d-field) is a field together with a 

third(unary) operation ”  ”, called the differential operation 

satisfying the properties given below: 

(   )        (  )          

Let    be an ordinary d-field of characteristic 0, which 

consists of functions of a variable   and            be 

aset of  variables, abbreviated as  . The    (   ) derivate 

of    is denoted by    . Thus we have        (  )
     , 

etc. By an ordinary differential polynomial, or d-polynomial 

for short, we mean a polynomial in            and their 

derivatives    with coefficients in    (e.g ( )Q t , the field of 
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rational functions of   , where   stands for the field of 

rational numbers). The set of all such ordinary d-

polynomials if denoted by  *          + or  * + for 

short.  

Let    *          + be a non-zero d-polynomial, 

denote the degree and the leading coefficient of P with 

respect to (w.r.t) the variable     by    (     ) and 

   (     ) respectively. We denote the class of   by cls(P) 

which is the largest   such that some     actually occurs in 

 . If    , the    ( )   . 

The order of   w.r.t.   , denoted by ord (    ), is the 

greatest   if exists, such that deg(     )   . If 

deg(     )    for any      , then define order of    w.r.t. 

   to be 1, i.e., ord(    )    . Let   be a d-polynomial 

with   ord(    ) and   deg(     ); then pair 〈   〉 is 

called the rank of   w.r.t.    and denoted by rank (    ). 

We order 〈   〉  〈     〉 if       or     ,     . 
Fix the variables ordering as              and 

order         if    . The leading variable of  , denoted by 

lvar( ), is defied to be    with the biggest index   such that 

deg (     )    for some   if    , or   otherwise. 

     Let   be a non-zero d-polynomial with cls( )      

and rank(    )  〈   〉. Then   can be written in the 

following form: 

       
       

         (    ) 

where ord(     )    for each  . We call    the initial of  , 

denoted by ini( ) and     the lead of  , denoted by 

lead( ). Moreover, define ld( )  ld(      ( )) and 

   ( ), the initial of   to be the leading coefficient of   

w.r.t. the lead of  , i.e., ini( )  lc(      ( )). The d-

polynomial      
         is called the reductum of  , 

denoted by    ( ). The d-polynomial 
  

    
 is known as the 

separant of   and denoted by    ( ). Let   be any other d-

polynomial. Pseduo-divining   by   and its derivates in   , 

we get 

    ( )   ( )     
    

    
     

    

    
   

where        are non-negative integers and   is a d-

polynomial with the condition     (    )  〈   〉 (for 

details the reader may see [16]).   is called the d-pseudo 

remainder of   w.r.t.   and denote it by d-prem(   ), 

where   is not necessarily unique. We put d-prem(   )  
  when d-prem     and d-prem   ( )   . 

     A differential polynomial set (d-polynomial set) is a finite 

set of non-zero d-polynomials and a differential polynomial 

system (d-polynomial system) is a pair of d-polynomial sets. 

Let  ̃ denote the algebraic closure of  . A common d-zero 

of two d-polynomials   and   is defined to be a common 

zero of all linear combinations of derivatives of   and  .  

     Let   and   be two d-polynomial sets, we denote by 

Zero (  ⁄ ), the set of all common d-zeros (in  ̃) of the d-

polynomial in   which are not d-zero of any d-polynomial in 

 . That is Zero(  ⁄ )  {   ̃   ( )     ( )  

          }. By a d-polynomial system, we mean a 

pair ,   - of d-polynomial set with   possibly empty. A d-

Zero of ,   - is meant an element of Zero(  ⁄ ). 

B. Ordinary differential characteristic sets 
The characteristic set (char set) method of solving 

polynomial  equations is naturally extended to the 

differential case which gives rise to an algorithmic method 

of solving an arbitrary set of differential polynomials. The 

idea of the method is reducing the set of d-polynomials in 

general form to the set of d-polynomials in the d-triangular 

form. With the help of this method, solving a set of d-

polynomials can be reduced to solving a univariate set of d-

polynomials in the cascaded form. 

The differential characteristic (d-char) set method can also 

be applied to computation of the dimension, the degree, and 

the order of a set of d-polynomials, resolution of the radical 

ideal membership problem, and proof of theorems from 

elementary and differential geometries [22]. 

     For defining the partial ordering of d-polynomial sets let 

us consider at first that such d-polynomial sets are well 

arranged in the following sense. The d-polynomials present 

in the set are non-constant ones and so are arranged with the 

classes    steadily increasing i.e.,         . The 

leading coefficient or the initial of the i-th d-polynomial in 

the set is either a non-zero constant or has a class less that   . 
It means if it is of class   ,      , it should have a degree 

less than that of j-th d-polynomial in the set, such a d-

polynomial set is called the d-ascending set. Thus some 

partial ordering is introduced among set of all such d-

ascending sets, with the set which consists of a single non-

zero constant, is considered, as the trivial d-ascending set to 

be arranged in the lowest ordering.  

     Consider any finite set of the non-zero d-polynomials. 

For such a d-polynomial set, any d-ascending set of the 

lowest order contained in the given set is called the d-basic 

set. A partial ordering is unambiguously introduced among 

all non-empty d-polynomial sets according to the partial 

ordering of their d-basic sets. Any d-polynomial set 

containing a non-zero constant d-polynomial will clearly be 

lowest ordering. Now consider such a given set   and 

consider the scheme below: 

          

            

            

 

     In this scheme, each    is the d-basic set of   . Each    

is the set of non-zero d-remainders of d-polynomials       

w.r.t.   . If    is non-empty then             . It is 

easy to prove that the sequence of    is steadily decreasing 

sequence, i.e.,       …     . Such a sequence 

cannot be infinite and it should be terminate at some stage   

with    . The corresponding d-basic set      is then 

called the d-char set of  .  

 

     Lemma 2.1: Let    * + be a non-empty d-polynomial 

set having a d-basic set   *          +, where 

   (  )   . If   is a non-zero d-polynomial reduced w.r.t. 

 , then   * + has a d-basic set of rank lower than that of 

 . 
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Proof: Let      * +. If    ( )    then * + is a d-basic 

set of    and has rank lower than that of  . Suppose 

otherwise    ( )     . As   is reduced w.r.t.  , then 

there exists an  (     ) such that      (   ) and 

     (    ) when    . Moreover, in the case   

   (  ), we have    (    )      (  ). Hence 

*               + is an d-ascending set contained in    

and has rank lower than that of  . The d-basic set of   has 

therefore rank lower than that of  . 

 

     Definition 2.1: A finite non-empty ordered set   
*          + of non-zero d-polynomial in  * + is called a 

d-ascending if we have either     or     and   
   (  )     (  )       (  ). 

 

     Definition 2.2: Let   be as above and call 

d-prem(   )  d-prem ( d-prem(    )     ) 

the differential pseudo-remainder (d-pseudo-remainder) of   

w.r.t  . For any d-polynomial set   we define d-

prem(   )  *      (   )    +,    ( )  
*   ( )    + and    ( )  *   ( )    +. 

Definition 2.3: A d-ascending set   is called a d-char set of a 

d-polynomial set   if   is contained in the d-ideal generated 

by the d-polynomials in   and d-prem(   )   .  

From the definition it is easy to establish the following zero 

relation: Zero( )   Zero (   )       Zero (   ), where 

     ( )     ( ). 
3. ADMISSIBLE DIFFERENTIAL REDUCTIONS 

ANDGENERALIZED DIFFERENTIAL 

CHARACTERISTIC SETS 

A. Generalized differential characteristic sets 

In this section we define the generalized d-char sets for the 

ordinary d-polynomial sets. The d-char set method has 

several variants. We use notion of the differential medial set 

(d-medial set) of the d-polynomial set  . 

Definition 3.1:Let   be a non-empty d-polynomial set  * +. 
A d- ascending set   is called a d-medial set of  , if 

  〈 〉and   has ranking not higher than the ranking of 

any d-basicset of  . 

     The d-medial sets are the d-ascending sets with rank not 

higher than that of the d-basic set of   and in which all the 

d- polynomials are linear combinations of the d-polynomials 

in   with d-polynomial coefficients. Therefore any d-basic 

set itself is a special d-medial set of the d-polynomial set. It 

has been proved that in Ritt’s original algorithm, the d-basic 

set can be replaced by the d-medial set. 

Proposition 3.1: Let P be a non-empty d-polynomial set in 

 * +,   *            + be a d-medical set where 

   (  )     If   is a non-zero d-polynomial reduced w.r.t. 

 . Then any d-medial set    of the d-polynomial set 

       * + has rank lower than that of   i.e.,   
 . 

Proof: Let    and    be d-basic sets of   and     

respectively. Then      by definition. If     , then   

is reduced w.r.t.   . Hence by Definition 3.1 and Lemma 2.1 

we have           >. If     , then    

        hold. Therefore in either case     . 

Which completes the proof. 

     There may appear some redundant factors which are the 

initials of other occurring d-polynomials during computation 

of the d-char sets, these factors must be removed for 

controlling the expansion of d-polynomial size. If the 

removal of such factors is allowed then the d-ascending sets 

which are computed by the d-char set algorithm are no 

longer Ritt’s d-char sets, instead they are what we call the 

modified d-char sets. 

     Definition 3.2: For any non-empty d-polynomial set   in 

 * +, an ascending set   is called a generalized differential 

characteristic (generalized d-char) set if it satisfied the 

following twoconditions 

(1)   〈 〉 
(2) There exists a d-polynomial set   * + such 

that〈 〉  〈 〉 and d-prem (   )    

     In our paper, the generalized d-char sets for the ordinary 

d-polynomial sets are defined in order to preserve the ideal 

relations by means of the admissible differential reductions 

(d-reductions). When only the zeros of d-polynomial sets are 

of concern, we consider the radical ideal relation instead to 

define and compute the generalized d-char sets. 

B. Admissible d-reductions 

     The standard d-reduction which is used in Ritt-Wu’s 

algorithm for the d-char sets and its variants is the d-pseudo 

division, that may lead to the superfluous factors and swell 

of the d-polynomial coefficients. This is among the main 

reasons that degrades the performance of Ritt-Wu’s 

algorithm in many cases. We introduce some specific 

admissible d-reductions and discuss implementation of our 

scheme by means of the admissible d-reductions. We define 

some functions before introducing the admissible d-

reductions. 

Definition 3.3: Let   and   be two non-zero d-polynomials 

in  * + and      be a lexicographic term order in  * + 
such that           . We order     or     if  

(1) lead( )         ( ), or 

(2) lead( )      ( ) and rank(      ( ))  

    (      ( )) 

If neither     nor    , then we write    . In 

addition,     is defined.  

Note that the partial order < defined above is refinement of 

  defined in Definition 2.1. In particular, for any two d-

polynomials      * + * +,     implies that     on 

the contrary,     implies only    , and     does 

not essential hold.  

Definition 3.4: Let   be defined, as an operation between 

two non-zero d-polynomials      * +  . It takes d-

polynomials as input and returns an ordered set of two d-

polynomials as output. This output is denoted by d-

Prem (     ). 
Definition 3.5: Let us define a function d-Rem as ,     -   

d-Rem (     ) for d-polynomials      * +  . The 

operation   is called an admissible d-reduction in  * + in 

 * + if       〈   〉. 
Suppose the   is an admissible d-reduction in  * +, we see 

that   is  -reducible w.r.t.   if      and     ; 
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otherwise   is said to be  -reducible w.r.t.  . The d-

polynomials   and   are called d-reductend and the d-

reductor respectively. The function d-Rem (     ) is 

called the   d-reduction rest of   by  . 

Definition 3.6: Let d-RemCh be an extension of function d-

Rem which is defined earlier. D-RemCh(     ) not only 

returns the   d-reduction rest of   by  , but it also returns a 

Boolean value  . When this   is true, the d-reduction rest   

must satisfy the condition     〈 〉. 
If   is an admissible reduction in  * +, then for any two d-

polynomials   and  , we say that   is  -reducible w.r.t.   

if      and     . Otherwise   is d–reduced with 

respect to  . The   and   are called the d-reductend and the 

d-reductor respectively. d-Rem (     ) is called the d-

reduction rest of d-polynomial   by d-polynomial  . 

Definition 3.7: dFind3R (   ) is defined as a function 

which chooses d-polynomial   (d-reductend) and   (d-

reductor) from   and   (d-reduction) from   such that d-

polynomial   is  -reducible with respect to d-polynomial  . 

Moreover if d-Find3 (   ) finds appropriate       then it 

returns this triple otherwise it will return , -.  
Definition 3.8: d-Rem(     ) is a function which returns 

  (reduction-rest)   of d-polynomial   by the d-polynomial 

  and a Boolean value  . Whenever this   is true, the 

reduction –rest   must satisfy the condition      〈 〉. 
     Now we define the admissible reductions we have used in 

our algorithm.  

Definition 3.9: Univariate GCD d-reduction. 

Univariate GCD d-reduction is defined as follows 

d-Rem(       )   [      (      )] If     are 

univariate polynomials in    . 

d-Rem(       )   ,   - , otherwise    is some variable 

in  .  

     It can be easily verified from the definition of gcd that 

    is an admissible d-reduction and d-polynomial   is 

   -reducible w.r.t. d-polynomial   if and only if   and   

are univariate d-polynomial in the same variable. 

     Jacobi introduced pseudo-division by multiplied a 

polynomial   with a certain power of the leading coefficient 

of   before performing the division with remainder. So 

using pseudo-division instead of division with remainder in 

every step in the Euclidean Algorithm yields an algorithm 

with all intermediate results. Pseudo-division which is used 

mostly in many triangular decomposition algorithms is an 

admissible reduction also used in our algorithm for 

differential polynomial systems. 

 

     Definition 3.10: d-pseudo-division reduction. 

The d-pseudo-division reduction is defined below. 

d-Rem(       )  ,      (        ( ))  - 
Then we have 

   ( )    ( )  

     (        ( )) 

     (        ( )) 
where     are non-negative integers. Therefore 

     (       )  〈   〉  
which ensures that     is an admissible reduction in  * +.  

     There is one big disadvantage of the d-pseudo-division is 

that it leads to exponential coefficient growth; the coefficient 

of the intermediate results are generally enormous, their bit 

length may possibly be exponential in the bit length of the 

input d-polynomials   and  . Thus we also use the one 

stepd-pseudo-division as a reduction for d-polynomials. 

 

     Definition 3.11: Let  and  be two d-polynomials in 

 * +   with .       ( ),      ( )   ( ) and 

    (    ). Suppose that   is d-reducible with respect to 

 . Then one-step d-pseudo-division can be performed as 

following 

       (  )
   (    )   ( ) 

where      (   )   and      (   )  ,   is called the 

one-step d-pseudo-remainder of d-polynomial   w.r.t. d-

polynomial  . It is denoted by d-stprem(   ). 

     It can be seen that the d-pseudo-division is a recursive 

application of the one-step d-pseudo-division. Therefore it 

may immediately lead to superfluous factors of the d-

pseudo-remainders but for the one-step d-pseudo-division it 

is easy to control the size of d-polynomials, which may 

output as smaller d-reduction-rests than the d-pseudo-

division. One may use one-step d-pseudo-division reduction 

as admissible reduction. 

Definition 3.12: One-step d-pseudo-division reduction. 

One-step d-pseudo-division reduction is defined as follows:  

d-Rem(       )  ,        (   )  - if   be d-

reducible w.r.t  . 

d-Rem(       )   ,   - otherwise. 

Let   be d-reducible w.r.t   then d-stprem (   )  〈   〉. 
Therefore  

d-Rem(       )  〈   〉. Otherwise  

d-Rem(       )  ,   -  〈   〉 is obvious. Hence     

is an admissible reduction by definition. 

 

     Definition 3.13: One-step d-division reduction. 

The division operation can also be viewed as an admissible 

reduction. So we define the one-step d-division reduction. 

d-Rem(       )  ,  
 

    ( )
    - if   a monomial   

of  and if   a monomial   of   such that     ( )    

d-Rem(       )  ,  
 

    (  )
     - if   a monomial 

  of   such that     (  )    
d-Rem(       )  ,   -, otherwise. 

It can be verified that    is an admissible reduction and d-

polynomial  is    -reducible w.r.t d-polynomial  if 

andonly if there exists a monomial of  which can be divided 

bylead( ) or lead(  ). 
Subresultants and polynomial remainder sequences are an 

important tool in the field of polynomial computer algebra. 

Multi polynomial resultants are the oldest known 

methodology for eliminating the variables. Computation 

techniques to manipulate the sets of polynomial equations 

are gaining importance in the symbolic and the numeric 

computations. 

The fundamental difficulties include simultaneous 

elimination of one or more variables to acquire a 

symbolically smaller system and figuring the numeric 
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solutions of the system of equations. The method of resultant 

is one of such methods. The main consequence is the 

construction of a single resultant polynomial of   

homogenous equations in n unknowns. We refer this 

resultant as the multi polynomials resultant of certain system 

of equations. 

     Let two d-polynomials   and   in  * + are said to be 

similar if there exist       ,       such that      , 

denoted by    . 

 

Definition 3.13: Let the polynomial   and   be renamed    

and    and suppose that    (     )      (     ). Then we 

form a sequence of d-polynomials   ,   , …,    such that 

   d-prem(            )         and d-

prem(          )   . Such a sequence is called a d-

polynomial remainder sequence of   and   w.r.t.   . 

     Let lvar( )   lvar( ), ld( )   ld( ) and treat     

univariate d-polynomial in     lvar( ) with coefficients in 

 {            }. Let   and   be d-polynomials, define d-

res(      ) be the resultant of   and   w.r.t.  . Then if we 

have d-res(      )   , it means    is the greatest common 

divisor of   and   w.r.t.   . Also, in the case when d-

res(      )   , we have cls      ( ) and    (    )  

   ( ). Thus      is the greatest common divisor of   and   

with respect to   . Note that we only mention definitions 

required. For details of the resultants and subresultants 

reader may see [2] and [21]. 

Definition 3.15:  Subresultant d-PRS reduction. 

We introduce the following d-reduction for d-polynomials.  

d-Rem(       )   ,    - if lead( )      ( )   ( )  
  ( ), and d-res (   ,lead ( ))     
d-Rem(       )  ,       - if 

lead( )      ( )   ( )    ( ) , and d-

res (   ,lead ( ))     
d-Rem(       )   ,   - otherwise. 

     After defining the admissible d-reductions above we are 

ina position to describe an algorithmic scheme for 

computing generalized d-char sets for ordinary d-polynomial 

sets. 

The scheme was purposed by Jin et all [17] earlier for 

algebraic case. Our purpose is to find a concrete algorithm to 

triangularize d-polynomial sets with the help of admissible 

d-reductions and some powerful elimination strategies in 

order to replace the algorithm of d-basic set which is used in 

Ritt-Wu algorithm. 

 

4. COMPUTING GENERALIZED ORDINARY 
DIFFERENTIALCHARACTERISTIC SETS 

A. Algorithmic scheme 

Jin et al [17] weakened the compulsory condition by 

replacing the given polynomial set with an arbitrary 

polynomial set which generates the same ideal as the input 

polynomial set, leading to the concept of generalized 

characteristic set. This set may have polynomials of degrees 

smaller than the degrees of those in the input set and 

consequently may take less computing time for pseudo-

reduction to 0. They made use of this weakening condition 

and followed the work [6] and presented an algorithmic 

scheme for computation of generalized characteristic sets by 

means of admissible reductions other than pseudo-division, 

for algebraic case only. This scheme is valuable as it 

effectively control the swell of polynomial coefficients as 

well as degrees. Therefore, we use the same idea for 

ordinary d-polynomial sets. For this purpose, admissible d-

reductions other than pseudo-division are used in order to 

control the swell of coefficients of intermediate d-

polynomials during the computation of d-char sets. In order 

to compute generalized d-char sets, we propose an 

algorithmic scheme which has set of admissible d-

reductions, d-medial sets and strategies for finding the d-

reduction polynomials as placeholders. Our first algorithm 

NewdCharSet1 computes a generalized d-char set for any 

given ordinary d-polynomial set. 

Algorithm 1: NewdCharSet for computing a generalized 

d-char set of any given d-polynomial set. 

Input:  = a non-empty d-polynomial set in  * +;  = 

set of admissible reductions in * +. 
Output:  = generalized d-char set of PS. 

    

    

while     do 

 ,   -         (   )  
if   is contradictory then 

     

else 

  d-rem (      * +; 
        ; 

Proof. (NewdCharSet) Correctness.The correctness of 

algorithm can be seen as following. We know from the 

properties of dMedSet’s output that 〈 〉  〈 〉 and   is d-

medial set of  . It means     . Now according to d-

pseudo division formula we have    〈 〉 always holds 

during running of algorithm. Also ideal generated by   

remains the same with ensure that 〈 〉  〈 〉 always true. In 

addition d-prem(   )  * + when the while loop terminate. 

Hence   is the d-generalized char set of   by definition.  

Termination. We use    and    to represent the values in 

the ith while loop for   and   respectively. If we recall the 

properties of  d-medical set, we obtain a sequence of d-

triangular set            Also we know the 

sequence of d-triangular set is finite. Hence the algorithm 

terminates. 

 

B. Algorithm for computing d-medial sets 

  Here algorithm dMedSet is presented which replaces the d-

basic set algorithm of Wu d-char sets. It uses several 

admissible d-reduction instead of apply simple d-pseudo-

division. Therefore, the computation process may speed up 

and also we may get simple output for larger problems. 

 

Algorithm 2:dMedSet for computing a d-medial (d-basic) 

set of any given d-polynomial set 

Input:   = any given polynomial set in  * +;   = setof 

admissible reductions. 

Output:    d-medial set of  . 
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   ; 

while cond do 

 ,     -   dFind3R(   ) 
 ,   -   d-RemCh,     -; 
 if    * + then 

   * +    * +  
 break; 

else 

      *   +   ; 

 If       and   then 

     *   +   ;  

  dBasSet (   ) 

 

Proof. (dMedSet) Correctness. This is clear from the 

statement,   -   d-RemCh (     ) that    〈   〉 by 

Definition 3.6. It is easy to verify that   〈 〉 will always 

hold during the running of the algorithm, therefore   〈 〉. 
In addition, the ranking of   is not higher than that of any d-

basic set of  ; therefore   is a d-medial set of   by 

definition. Let    be the initial value of   in the ith while 

loop. Then obviously, 〈  〉  〈 〉. Assume that 〈  〉  〈 〉 
and we claim that 〈    〉  〈 〉 as follows. 

     Let the statement ,   -   d-Rem(     ), in the ith 

while loop. Suppose we have the Boolean expression 

(            ) equals false, then         Hence 

〈    〉  〈 〉. Furthermore, assume that (           ) 

equals true, then we have         *   +   . Since   

is an admissible d-reduction, therefore   〈   〉. It is 

known by the assumption on   returned by dRemCh, one has 

    〈 〉. Thus 〈   〉  〈 〉, which implies that 〈    〉  
〈   *   +   〉. Moreover, from the above 〈    〉  〈 〉, 
therefore 〈 〉  〈 〉 always holds.  

     Hence the correctness of the algorithm is proved. 

Termination. Termination of algorithm is obvious by the 

assumption on cond. 

     In the algorithm dMedset cond,   and dFind3R are 

Procurators. There are many ways to assign cond. In case 

when weset it cond = false the while loop in the algorithm 

does notstart and this algorithm becomes identical to the d-

basic set algorithm of Ritt-Wu. By taking different d-medial 

sets we can have different variants of d-char set algorithm. 

In particular, if we replace the d-medial set by the d-basic set 

then the generalized d-char set algorithm is identical to the 

d-char set algorithm. In addition the dMedSet not only gives 

us a d-medial set but also produces another d-basis B of the 

ideal〈 〉. 
C. Algorithm for finding triples of d-reductends, d-

reductors and d-reductions 

In this section we present the algorithm dFind3R for finding 

triples of d-reductends, d-reductors and d-reductions. Here 

we discuss the possible strategies for dFind3R. In our 

execution, we have cond to be dFind3R (   )    

therefore while looprepeats till we get triple ,     - such 

that d-polynomial  is  -reducible w.r.t. d-polynomial  . 

     We define dFind3R, as we have described above the set 

of selected admissible d-reduction is 

  *               +. Our purpose here is to select 

thebest triple as there may exist many triples between a pair 

of d-polynomials. So we define here a way to order the 

triples. We take the d-polynomial of maximal class and 

maximal degrees first reduced by a d-polynomial of minimal 

degree. 

     At first, it is usual that a triple with     is better thanthe 

triples without having it. Secondly, a triple with   is better 

than the remaining two as it is easy to see thatcomputation of 

the    reduction rest of the d-polynomial   and Q needs 

less multiplications and reduction rest is mostly smaller. 

Thirdly, the triple with the     is may be better thantriple 

with     as     involves coefficients of small in sizethan 

that of     . Finally, a triple ,     -may be betterthan the 

triple ,       - (   ) if      or     .This 

observation base on the method of d-reduction in Ritt-Wu 

algorithm. That is the d-polynomial of maximum class and 

maximum degree should be first reduced by the d-

polynomial having minimal degree. In short we provide the 

formal definition of an order on the triples: ,     -  
,        - if      or     and      or      and 

    and     . We order the admissible d-reductions in 

  as               . By taking a d-polynomial 

set   and a set  of admissible d-reductions as an input 

inalgorithm dFind3R, we take the following steps to find a 

best triple if exists or  as output: 

Algorithm 3: dFind3R for computing a minimal 

triple,       -,such that   is  -reducible w.r.t   

Input: A set of d-polynomial in  * +; 
  *               + 

Output:   or ,       - such that   is  -reducible w.r.t  . 

   ; 

for        ; 

while      do 

   *       *  ++; 
if          such that   is    -reducible w.r.t.   then 

return ,       - such that     has maximal 

degree and     * + has fewest terms and 

minimal degree,   is    -dreducible w.r.t  ; 
,          -     

for     to 2 do 

   *    *  +                            +; 
 if    then 

choose     fewest terms and minimal 

leading degree; 

  return ,        -; 
for     to 2 do 

   *    *  +                            +; 
 if    then 

choose     fewest terms and minimal 

leading degree; 

  return ,        -; 
for     to 2 do 

   *    *  +          
                  +; 
 If     then 

choose     fewest terms and minimal 

leading degree; 

  return ,        -; 
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Step 1. At first it verifies if there exist triples 

,       -,where the d-polynomials          . If 

there is onlyone triple then it will return it, in case there are 

several, thenit will return the triple in which d-polynomial   

has maximalclass and maximal leading degree and d-

polynomial   hasfewest number of terms and of minimal 

degree. 

Step 2. In the second step the d-polynomials in   will 

besorted increasingly w.r.t. partial order < and then it will 

taked-polynomial   of highest order, and check if there 

existsome d-polynomial   such that   is     d-reducible 

w.r.td-polynomial  . Now if only one   then return 

,       -,else return   which has minimum terms and 

least leadingdegree; otherwise in case when there is no such 

triple exist,go to next step. 

Step 3. Again find d-polynomial   of highest order, 

thencheck if there exist some d-polynomial   such that   

is    d-reducible w.r.t d-polynomial  . If exist triple 

return,       -, else go to next step following same 

procedureas step 2. 

Step 4. Similarly, start with a d-polynomial   of highest 

orderagain, then check if there exists any d-polynomial   

such that  is     d-reducible w.r.t d-polynomial  . If exist 

triplereturn ,       -, else go to next step. 

Step 5. If there does not exist some triple in all four 

steps,then output will be  . 

It is significant to note that the ordering is critical for the 

efficiency of the algorithm dMedSet. One may sort d-

polynomials w.r.t. different orderings depending on the 

admissible d-reductions. Thus by changing the ordering, we 

can get different d-char sets for a d-polynomial set. 

The above steps can be described formally in the following 

algorithm dFind3R which finds the triples of d-reductends, 

d-reductors and d-reductions for a d-polynomial set. 

Proof.(dFind3R) Correctness and termination of the 

dFind3Ralgorithm follows from the analysis and description 

described above in steps. 

The design of this dFind3R is quite flexible and it can be 

made more technical and widespread. If the input set of the 

algorithm dFind3R contains d-polynomials of some 

particular form or configuration, then new d-reductions 

approaches maybe implemented in order to improve the 

efficiency. One might introduce other admissible d-

reductions for example; one may use modular d-reduction. 

There are numerous ways to improve this algorithm. Other 

techniques can be smeared, for example from linear algebra. 

 

5. IMPLEMENTATION AND EXPERIMENTS 
In this section we present some examples to compute the 

generalized d-char sets of ordinary d-polynomial sets by 

implementing our algorithm NewdCharSet described in 

Section4 using the epsilon library of Wang in Maple 14. 

Example 5.1: [4,6,18,23]. Kepler-Newton’s Laws. Let the 

coordinate of the planet be (   ), depending on the time 

variable t. Assume that the sun is located at the origin(0, 0). 

Then the d-polynomial equations for the Newton’s law are 

   (   )   ,                

where   is the acceleration of the planet and   the length 

ofthe radius vector from the sun to the planet. Then we have 

             ,                     

 

Take a d-polynomial set   *           + with     
   . If we compute a d-char set of  , by the NewdCharSet 

algorithm, we get the following output: 
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     Example 5.2: [11]. We take the following d-polynomial 

set  consisting of three d-polynomials   ,    and    . 

  {x′− x
2
−xy, y′+ yx+ y

2
, x′

2
 + y′

2
 + z′

2
−1}, 

with     . 

Compute a d-char set of the set 

  *        +, 
by the algorithm NewdCharSet, one gets following d-

polynomial set as the output: 

{x′− x
2
−xy, y′+ yx+ y

2
,−1 + z′

2
 + yx

2
 + 2yxy

2
 + 

y
4
 + x

4
 + 2x

2
xy + xy

2
}. 

 

     Example 5.3: [11]. Take five d-polynomials (the 

pendulum in Cartesian coordinates) and form a set   

consisting of five 

d-polynomials:  ,       - 
   = mq′+ λy+ g,    = y′− q,    = mp′+ λx,   = x′− p,    = 

x
2
 + y

2
−1, 

with          .. 

Let us compute a d-char set of d-polynomial set 

  ,              -, 
by the algorithm NewdCharSet, we get the following d-

charset in the output: 
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     Example 5.4: [11]. Take a d-polynomial set    consisting 

ofseven d-polynomials                  and    defined 

asfollows: 

   

{x′
1
−p

1  
 −p2x1x2−u,   

 −p3  
 +p4, y−x1,   

 , . . . ,   
 } 

with                      . 

If one computes a d-char set of the set 

  *                    +, 
by NewdCharSet algorithm, then one gets the following d-

charset: 

{  
 ,   

 ,   
 ,   

 , −y + x
1
, −  

  − p4 + y
2
p3, u + y p2x

2
 +y

2
p1}. 

Example 5.5: [19]. If a particle moves in a plane under a 

central force which is proportional to the radius drawn from 

the particle to the force center. We compute its d-char set. 

Let the coordinates of the particle be ( ( )  ( )) where 

 istime. We assume that the force center is the origin point 

(   ).Let  be the magnitude of the acceleration of the 

particle and be the length of the radius vector drawn from 

the particle tothe force center. The problem can be 

represented as following equations (see details [19]) 

 

H1 = r
2
− x

2
− y

2
 = 0, 

H2 = a
2
− x′′

2
− y′′

2
 = 0, 

H3 = x′′y−y′′x= 0, the force is toward the origin, 

H4 = ld(a, r) = a′ r − r′ a, a is proportional to r. 

Take a d-polynomial set 

  *           + 
with ordering        . Compute a d-char set of thed-

polynomial set   by the NewdCharSet algorithm. We getthe 

following d-char set: 

{x′′(−2 x
2
x′′ x′ y

2
 + x′′′ x

5
 + 2x′′′ x

3
y

2
− x

4
x′′ x′+ xx′′′ y

4
− x′′ 

y
4
x′)x

2
x′′2 − x′′

2
y

2
, r

2
− x

2
− y

2
} 

 

The Table 1 provides information about the test examples. 

We have the following information from Table 1; 

nops: the number terms in each d-polynomial which appears 

in d-char set of each example. 

time: the time in seconds for computing d-char set for each 

example. 

For example, the entry 64, 3, 4, 3 in the second column and 

first row represent the obtained d-char set consists of aset of 

four d-polynomials having 64, 3, 4, 3 number of terms 

respectively. Similarly the entry 12.808 s in first row and 

third column represents that the d-char set of the d-

polynomial set  is computed in 0.132s by the algorithm 

NewdCharSet. 
Table I 

Nops And Timing In The Outputs Of Newdcharset 

No Nops Time 

1 64, 3, 4, 3 12.808s 

2 3, 3, 8 0.016s 

3 20, 2, 3, 3, 2, 2 0.140s 

4 1, 1, 1, 1, 2, 2, 3 0.47s 

5 6, 3, 3 0.047s 

 

The Table 2 collects information about degree tuple. The 

degree tuple of each d-polynomial obtained in the output of 

d-char set computed by NewdCharSet. Let us explain the 

meanings of the entries in table 2, for example the entry in 

the second row and the second column containing three 

tuples implies that the output of NewdCharSet for example 2 

consists of three d-polynomials, say F1, F2, F3,the degrees of 

F1 in x, y, z (x   y   z) are 3, 3, 8 respectively. 

Table Ii 

Deg Tuple Of D-Polynomial Set In The Output Of 

Newdcharset 

No Degree Tuple 

1 [13, 6, 0, 0], [2, 2, 2, 0], [2, 2, 0, 1], [2, 2, 0, 2] 

2 [2,0,0], [0,2,0], [4,4,0] 

3 
[13,6,0,0,0], [1,1,0,0,0], [1,0,1,0,0], [0,2,2,0,0], 

[0,0,0,1,0], [0,1,1,0,1] 

4 

[0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], 

[0,0,0,0,0,0,0],  

[0,1,0,0,0,1,0], [0,2,0,0,1,1,0], [1,2,0,0,1,1,0] 

5 [5, 4, 0, 0],[2, 2, 0, 2],[2, 2, 2, 0] 

 

6. REMARKS AND FUTURE WORK 
A necessary condition for C to be a d-char set of a d-

polynomial set P is that all d-polynomials in P have d-

pseudo-remainders 0 w.r.t C. This condition is weakened 

now by replacing the d-polynomial P with an arbitrary d-

polynomial set that generates the same ideal as the d-

polynomial P, which leads to generalize the d-char sets for 

the ordinary d-polynomial sets. In this way the expression 

swell of immediate d-polynomials in the process of variable 

elimination by means of d-pseudo-division can be avoided 

and we get simpler 

outputs for large problems. 

In present paper the concept of generalized d-char sets has 

been presented for ordinary d-polynomial sets. Comparison 

with the existing schemes for computing d-char sets for 

ordinary d-polynomial sets and their physical applications 

will be in our consideration further. This concept will be 

extended for d-polynomial systems in forthcoming papers. It 

will be interesting to extend this idea to the partial 

differential case as well. 

Admissible d-reductions which are used in generalized d-

char sets may also be applied to other algorithms for 

triangular decomposition. Moreover, the condition of 

admissible d-reduction is quite flexible, other kinds of d-

reductions can also be imported, for example modular 

relation between d-polynomials and techniques from linear 

algebra. 

 

ACKNOWLEDGMENT 

I would like to thank Prof. Dongming Wang for his 

insightful conversations, consistent help and moral support 

to completethis paper. I also thank to Xiaoliang Li for 

revising it, MengJin and Jing Yang for their assistance in 

difficult times throughout. 



Sci.Int.(Lahore), 28(4),3613-3621, 2016 ISSN 1013-5316; CODEN: SINTE 8 

July-August 

3621 

 

REFERENCES 
 

[1] A. I. Ovchinnikov (2004) Characterizable radical 

differential ideals and some properties of characteristic 

sets. Programming and Computer Software 30:141-149. 

[2] B. Mishra (1993) Algorithmic algebra texts and 

monographs in computer  science. Springer-Verlag New 

York. 

[3] B. Sadik (2006) Computing characteristic sets of 

ordinary radical differential ideals. Georgian 

Mathematical Journal 13:515-527. 

[4] D. Wang (1995) A method for proving theorems in 

differential geometry and mechanics. Journal of 

Universal Computer Science 1:658-673. 

[5] D. Wang (1996) An elimination method for differential 

polynomial systems. System Science and Mathematical 

Sciences 9:216-228. 

[6] D. Wang (2001) A generalized algorithm for computing 

characteristic sets. World Scientific Publishing 

Company Singapore 165-174. 

[7] D. Wang (2001) Elimination methods, texts and 

monograms in symbolic computations. Springer-Verlag 

Wien New York. 

[8] D. Wang (2004) Elimination practice: software tools 

and applications. Imperial College Press London. 

[9] E. Hubert (2000) Factorization-free decomposition 

algorithms in differential algebra. Journal of Symbolic 

Computation 29:641-662. 

[10] E. Hubert (2003) Notes on triangular sets and triangular 

decomposition algorithms II: differential systems. 

Lecture Notes in Computer Science Springer-Verlag 

Berlin 2630:40-87. 

[11] E. Hubert (2004) Improvements to a triangulation-  

decomposition algorithm for ordinary differential 

systems in higher degree cases. ISSAC ’04Proceedings 

of the International Symposium on Symbolic and 

Algebraic Computation 191-198. 

[12] F. Boulier, D. Lazard, F. Ollivier, M. Petitot (1995) 

Representation for the radical of a finitely generated 

differential ideal Association for Computing Machinery 

New York 158-166. 

[13] F. Boulier, D. Lazard, F. Ollivier, M. Petitot (2009) 

Computing representations for radicals of finitely 

generated differential ideals. Applicable Algebra in 

Engineering Communication and Computing 20:73-121. 

[14] F. Boulier, F. Lemaire, M. Moreno Maza (2010) 

Computing differential characteristic sets by change of 

ordering. Journal of Symbolic Computation 45:124-149. 

[15] G. Gallo, B. Mishra, Wu-Ritt (1999) characteristic sets 

and their complexity. Discrete Mathematics and 

Theoretical Computer Science American Mathematical 

Society Providence 6:1110-136. 

[16] J. F. Ritt(1950) Differential algebra. New York AMS 

Press. 

[17] J. Meng, L. Xiaoliang, D. Wang (2013) A new 

algorithmic scheme for computing characteristic sets. 

Journal of Symbolic Computation 50:431-449. 

[18] S.C. Chou, X.S. Gao (1989) Automated reasoning in 

mechanics using Ritt-Wu’s method. University of Texas 

at Austin Austin TX USA. 

[19] S.C. Chou, X.S. Gao (1992) Automated reasoning in 

mechanics using Ritt-Wu’s method; PartIII. Proceedings 

of the IFIP International Workshop on Automated 

Reasoning Elsevier Science Publishers Beijing 1-12. 

[20] S.C. Chou, X.S. Gao (1993) Automated Reasoning in 

Differential Geometry and Mechanics using 

characteristic method IV Bertrand curves. J. of Sys. 

Math 6:186-192. 

[21] T. Sasaki, A. Furukawa (1984) Theory of multiple 

polynomial remainder sequence. Publ RIMS Kyoto 

Univ 20: 367-399. 

[22] W. T. Wu (1987-1991) Mathematics-mechanization 

research preprints.MM Research Center Academia 

Sinica 986:1-6. 

[23] W. T. Wu (1991) Mechanical theorem proving of 

differential geometries and some of its applications in 

mechanics. J. Automated Reasoning 7. 

[24] X.S. Gao, J. Van der Hoeven, Y. Luo, and C. Yuan 

(2009) Characteristic set method for differential-

difference polynomial systems. Journal of Symbolic 

Computation 44:1137-1163. 

[25] X.S. Gao and Z. Huang (2012) Characteristic set 

algorithms for equation solving in finite fields and 

applications in cryptanalysis. Journal of Symbolic 

Computation 47:655-679. 

[26] Y. Chen, X. S. Gao (2003) Involutive characteristic sets 

of algebraic partial differential equation systems. 

Science in China Series A: Mathematics46:469-487. 

[27] Z. W. Gan, M. Zhou, Decomposition of Reflexive 

Differential-Difference Polynomial Systems, Applied 

Mechanics and Materials, Vols 380-384,(2013)1645-

1648. 


